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Spatial heterogeneity and the stability of reaction states in autocatalysis
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The impact of stochasticity and spatial heterogeneity on the quadratic autocatalytic system is studied. In a
nonspatial setting the reactive state of the system is found to be unstable in small volumes where internal
fluctuations drive the system to the unreactive state. This phenomena is of potential importance to the stability
of reactions in biological cells. A simple spatial model is constructed by linkingN nonspatial models via
migration of reactants controlled by a mixing ratel. Simulation of this stochastic process demonstrates the
importance of such mixing in controlling the impact of internal fluctuations on the stability of the autocatalytic
reaction. For high mixing rate the mean reactant levels in equilibrium correspond to the well-mixed determin-
istic system, although a significant degree of spatial heterogeneity remains. For intermediate mixing rates,
mean reactant levels vary continuously withl, where the interaction of internal fluctuations with limited
spatial mixing modifies the reactive states of the deterministic system. However, there is a threshold below
which mixing is unable to control internal fluctuations which drive the system into the unreactive state. Thus
a critical minimum level of communication between the cells is required to stabilize the reaction across the
entire system. Approximate analytic results, obtained using moment-closure techniques, support these findings
and demonstrate the relationship between the spatial stochastic and nonspatial deterministic models.
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I. INTRODUCTION

In the absence of macroscopic environmental fluctuatio
classical reaction kinetics applies ordinary differential eq
tions to describe the progress of reactions in large volum
under conditions of perfect mixing. However, in many bi
chemical systems reactions occur in minute volumes
both stochasticity and spatial heterogeneity play import
roles in living cells. For example, by reference to cell vo
ume, Gibson and Bruck@1# show that the number of protei
molecules involved in reactions controlling gene regulat
in the Lambda phage infection ofEscherichia coliis of the
order 10–100. Moreover, the outcome of this infection p
cess is stochastic. Autocatalytic mechanisms play an im
tant role in the organization and coordination of biologic
cells, and quadratic- or cubic-autocatalysis represents gen
models whose behavior in stochastic and spatially hetero
neous systems are important for understanding process
living cells. This paper addresses these issues by explo
the impact of stochasticity and spatial heterogeneity in
quadratic autocatalytic process

A1B→2B, B→C,

where aB-particle catalyses the conversion of reactantA into
further B’s, and reactantB also decays to productC @2,3#.
Positive feedback is seen as a central mechanism in m
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important biochemical processes such as glycolysis@4#; au-
tocatalytic systems of this type have been widely studied
prototypical feedback systems@2,3,5,6#. Horsthemke and
Lefever @7# study the effect of environmental noise on
range of one-dimensional dynamical systems, and find
stochasticity may radically alter the behavior of determinis
models, for example, by inducing transitions between ste
states of the deterministic system, altering the level of s
states, or by inducing new states. Marionet al. @8# study the
effect of both environmental and internal noise on the q
dratic autocatalytic processes in the nonspatial setting o
continuous-flow stirred tank reactor~CSTR!, whilst the
present paper focuses on the role of internal fluctuations
spatially extended system. First, however, we review the
havior of the nonspatial process.

When quadratic autocatalysis is carried out in a CST
the system can be considered to be well mixed, of la
volume, and adequately described by the deterministic mo

da~ t !/dt5@a02a~ t !#n2ka~ t !b~ t !,

db~ t !/dt5ka~ t !b~ t !2~Kb1n!b~ t !, ~1!

wherea(t) andb(t) represent the concentrations ofA andB
particles, respectively. ReactantA is supplied at ratena0
from a reservoir of fixed concentrationa0: bothA andB are
removed from the reaction vessel at ratesna and nb, re-
spectively. The decayB→C occurs at rateKbb, and the
name of the process derives from the quadratic rate,kab,
©2002 The American Physical Society15-1
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for the autocatalytic stepA1B→2B. This system has two
fixed points, thereactive state(a1 ,b1) and theunreactive
state(a2 ,b2) given by

a15~Kb1n!/k, b15n~a0k2Kb2n!/@k~Kb1n!#

a25a0 , b250. ~2!

Where chemical and biochemical reactions occur in sm
volumes, or in poorly mixed conditions, deterministic d
scriptions such as Eq.~1! prove inadequate, and this is pa
ticularly true at low densities where finite size effects a
most significant. In such cases, discrete state-space Ma
models, or birth-death processes, have been extensively
in modeling chemical reactions and a wide range of biolo
cal and physical systems. In the physicochemical literat
models of this type are said to describe the state of the
tem at amesoscopicscale: that is, an intermediate scale b
tween themicroscopicscale, where molecular dynamic o
even quantum mechanical descriptions should be used,
themacroscopicscale where~in deterministic environments!
deterministic descriptions such as Eq.~1! are often employed
@9#. In a general birth-death process, the probability
change of state in a small time interval (t,t1dt) can be
written as

P„n~ t1dt !5n~ t !1dn…5R~n→n1dn!dt, ~3!

where the vector dn5(dn1 ,dn2 , . . . )T represents the
change in staten5(n1 ,n2 , . . . )T which occurs at rateR(n
→n1dn). The changedni in populationi is an integer, and
often61. The fluctuations caused by the stochastic natur
the events are typically referred to as internal fluctuations
physical and chemical models, and as demographic fluc
tions in biological systems. Whilst the exact simulation
straightforward, since interevent times are exponentially d
tributed @10#, an approximate alternative approach is to u
date time by a sufficiently small time stepdt and then to
choose the eventn→n1dn with probability ~3!.

To model the nonspatial~Fig. 1! quadratic autocatalytic
system described above at the mesoscopic level, we wrin
5(nA ,nB)T with dn5(dnA ,dnB)T and the ratesR(n→n
1dn) as

Rate dnA dnB

KnAnB 21 11 Autocatalytic reaction
KbnB 0 21 Decay of reactantB
nnA0 11 0 Influx of reactantA
nnA 21 0 Outflow of reactantA
nnB 0 21 Outflow of reactantB
0 otherwise ~4!

FIG. 1. Schematic representation of a nonspatial model of
autocatalytic process.
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The connection with the deterministic system~1! is made by
introducing the system volumeV and writing the densities
a5nA /V andb5nB /V, which for finite volumes are ran
dom variables. However, if the reaction rate scalesK
5k/V, then in the large volume limitV→` it can be
shown thata and b obey the deterministic equations~1!
@8,11,12#.

Figure 2 shows the effect of system volume on the sta
ity of the reactive state. The results shown are based
simulated data collected fort5(900 000,1 000 000) and thu
represent samples from the quasiequilibrium distribution
the birth-death processes~3! and ~4!. The parameter value
used arek51, a051, n5Kb51/17 @5#. For large volume
(V5200) internal fluctuations induce a distribution center
on the deterministic steady state (a1 ,b1); the reactive state
is stable with respect to internal fluctuations. However,
small volumes (V520), the system is driven toward an un
reactive state with fluctuations about the deterministic ste
state (a2 ,b2). At intermediate volumes (V550), the reac-
tive state remains stable with nonzero probability, but a p
portion of realizations fall into the unreactive state. Thus,
small volumes, where the reactive state is totally destabili
by internal fluctuations, there are qualitative differences
tween deterministic and stochastic models. Zhenget al. @13#
study a related system in which the concentration ofA par-
ticles is held fixed. The exact stationary distribution m
then be calculated since the resulting system is one dim
sional @10#. Zheng et al. show that as the system volum
increases the relative heights of peaks in this distribut
invert; a similar effect to that shown in Fig. 2. However,
contrast with the present case, where only one fixed poin
the deterministic dynamics is attracting, these peaks are
sociated with two attracting steady states of the correspo
ing deterministic system. For cellular systems it may se
unnatural to adjust the system volume. However, the ab
results hold for changes in the density of reactants, with l
densities corresponding to an unstable reactive state;
fixed cell volume changes in density correspond to chan

e

FIG. 2. The effect of volume in the nonspatial system. His
grams from simulations of the Markov processes~3! and ~4!, with
a5nA /V, b5nB /V, and parameter valuesk51, a051, n5Kb

51/17. Samples of the processes are taken fort
5(900 000,1 000 000). The solid vertical lines represent the e
librium values obtained from the deterministic model~1!.
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SPATIAL HETEROGENEITY AND THE STABILITY OF . . . PHYSICAL REVIEW E 66, 051915 ~2002!
in the number of reactant molecules per cell. Indeed, it
been found that in living cells the number of molecules c
be very low and enzymatic reactions occur in small volum
@1,14#.

In the remainder of this paper we study the effect of s
tial heterogeneity on the stability of the reactive state in q
dratic autocatalysis. Section II introduces a spatial autoc
lytic model in whichN nonspatial processes~3! and~4!, each
with volumeV51, are coupled via random migration ofB
particles, which is controlled by a mixing ratel. Stochastic
simulation is used to explore the stability of the reactive st
for a range of values ofl. Section III applies moment
closure techniques to develop approximations describing
system, they support the simulation results, reveal the r
tionship between the nonspatial deterministic model and
spatial stochastic system, and yield analytic insights into
system behavior in the limits of high and low mixing. F
nally, in Sec. IV we discuss the relevance of our results
living cells.

II. SPATIAL PROCESS

Figure 3 depicts the spatial autocatalytic process c
structed by linkingN nonspatial models via the migration o
B particles. The numbers ofA and B particles at sitei
51, . . . ,N are denotedni

A andni
B , respectively. The within-

site behavior is described by the nonspatial model~3! and
~4!, whilst the migration ofB particles is described by

P„ni
B~ t1dt !5ni

B~ t !21…5lni
Bdt,

P„ni
B~ t1dt !5ni

B~ t !11…5
l

N (
j 51

N

nj
Bdt, ~5!

where the first equation is the probability of migration fro
site i and the latter that of migration to sitei. The resulting
model can therefore be described as quadratic autocata
with random mixing ofB particles between cells. In wha
follows the volume of each site is taken to beV51, where
the total system volume is thenN, the reaction rateK5k,
andnA05a0.

Consider the evolution of the average reactant levels

^nA&[
1

N (
i 51

N

ni
A and ^nB&[

1

N (
i 51

N

ni
B .

Since we have setV51, ^nA& and ^nB& are dimensionless
quantities corresponding to the densitiesa and b, respec-
tively. Figure 4 shows these average reactant levels for t

FIG. 3. Schematic representation of the spatial autocatalytic
cess in whichN nonspatial Markov processes~3! and~4! are linked
together via random migration ofB particles.
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cal realizations of the spatial process at two mixing rat
The results show that for small mixing ratel50.01 the re-
active state is unstable just as in the nonspatial model. H
ever, a moderate mixing ratel51 stabilizes the reactive
state.

Figure 5 shows equilibrium estimates of the expected
erage reactant levels for a range of mixing rateslP@0,2#.
These results show that a critical minimum level of mixing
required to stabilize the reactive state. For smalll, the mix-
ing is insufficient to stabilize the reaction against stocha
fluctuation. However, as the rate of mixing increases,

o-

FIG. 4. Simulation of spatial system: The top graph shows ty
cal realizations of the average density^nA(t)& from the stochastic
spatial autocatalytic process described in Sec. II against dimens
less timetK for l51 ~solid curve! and l50.01 ~dashed curve!.
The bottom graph depicts the same information for reactantB. In
each case, the dot-dashed lines show the corresponding rea
levels obtained from deterministic equilibrium~2!. The parameter
values areK51, a051, Kb5n51/17, andN5500.

FIG. 5. Stability of reaction state: The symbols and solid curv
represent estimates of E@^nA&# ~diamonds! and E@^nB&# ~circles!
obtained from ten simulation runs, with samples collected, afte
burn-in period, fromt5500, . . .,1000, for a range of relative val
ues of the mixing ratel/K. The standard errors in these estimat
are approximately equal to the size of the symbols. The dot-das
lines show the corresponding reactant levels obtained from de
ministic equilibrium ~2!. The parameter values areK51, a051,
Kb5n51/17, andN5500.
5-3
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some critical point the reaction becomes stable across
system. Communication allows the cells to act coheren
Moreover, just above this threshold, the density of the re
tion productB is considerably lower than predicted by E
~2!, but this increases with the mixing rate to an asymptot
the level of the well-mixed deterministic system. Thus o
can think of l as controlling the effective noise level: fo
small noise~largel) the system is well mixed and the mea
reactant levels coincide with the deterministic nonspa
model predictions; for intermediate levels of noise the re
tive state is shifted with respect to the well-mixed case; a
for large noise~small l) the reactive state is complete
destabilized. Qualitatively similar results are obtained
small values ofVÞ1.

III. SPATIAL MOMENT-CLOSURE APPROXIMATION

In order to understand better the phenomena descr
above, we derive analytic approximations describing the s
tial system. In so doing we demonstrate the relationship
tween the deterministic nonspatial model and the stocha
spatial process. In particular, we construct equations des
ing the average reactant levels and apply the methodo
developed by Keelinget al., in the context of spatial model
in ecology@15,16#. This approach has two principal adva
tages over dealing directly with the site-specific reactant l
els, ni

A and ni
B . First, it reduces the dimensionality of th

problem to be solved from 2N to 5 ~see below!. Second,
even for moderate sized systems the variability of the av
age reactant levels will be much less than that of individ
sites, and therefore the task of calculating associated st
tics becomes more straightforward.

Writing the change in the level of reactantA at site i as
ni

A(t1dt)5ni
A1dni

A , the change in the average reacta
level is

1

N (
i 51

N

ni
A~ t1dt !5

1

N (
i 51

N

ni
A1

1

N (
i 51

N

dni
A .

Using the transition probabilities for sitei as defined in Eqs
~3–5!, conditional on the state of the system at timet being
n5$(n1

A , . . . ,nN
A)T,(n1

B , . . . ,nN
B)T% the expected chang

during a small time interval (t,t1dt) is then given by

EF 1

N (
i 51

N

ni
A~ t1dt !un~ t !5nG

5
1

N (
i 51

N

ni
A1S 2k

1

N (
i 51

N

ni
Ani

B

1na02n
1

N (
i 51

N

ni
AD dt.

Whence evaluating expectations E@•# at timet, and rearrang-
ing, leads to
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EF 1

N (
i 51

N

ni
A~ t1dt !G2EF 1

N (
i 51

N

ni
AG

5S 2kEF 1

N (
i 51

N

ni
Ani

BG
1na02nEF 1

N (
i 51

N

ni
AG D dt.

For any random variablezi associated with sitei, write the
spatial average

^z&5
1

N (
i 51

N

zi .

Then taking the limitdt→0 yields

d

dt
E@^nA&#52kE@^nAnB&#1na02nE@^nA&#. ~6!

The equation describing the evolution of the average leve
reactantB, namely,

d

dt
E@^nB&#5kE@^nAnB&#2~Kb1n!E@^nB&# ~7!

is obtained in a similar manner. The difficulty with Eqs.~6!
and ~7! is that they depend on the second-order te
E@^nAnB&#. In order to close this system of equations o
may choose to approximate this term as a function of
first-order terms E@^nA&# and E@^nB&#. This problem is char-
acteristic of nonlinear stochastic processes, and a numb
closure approximations exist. Broadly speaking, they may
classified into three types, namely, moment closure, cum
lant truncation, and spatial moment closure. In each ca
higher-order terms such as E@^nAnB&# are replaced by func-
tions of lower-order terms~i.e. E@^nA&# and E@^nB&#). Mo-
ment closure@17,18# achieves this by making some ansa
which determines the functional dependence; for exam
that the process is Gaussian@19#. An alternative approach is
cumulant truncation@20,21# whereby the moment equation
are reexpressed in terms of cumulants~see, e.g., Ref.@22#!
and higher-order cumulants are assumed to be zero. Fo
ample, second-order cumulant truncation sets third-
higher-order cumulants to zero and thus corresponds to
ment closure by the normal approximation. The complexit
involved in such methods are highlighted by the fact th
higher-order truncation does not necessarily improve the
curacy of the approximation@23#. In spatial systems, isot
ropy is often invoked and boundary~finite-size! effects are
ignored. Attention then focuses entirely on spatial mome
and to eliminate higher-order terms one either makes a
tributional assumption@15,16# or appeals to the spatial con
nectedness of the system@24–26#. We note that closely re-
lated cluster approximations have been applied in chem
physics@27# and the study of nonideal gases@28#.

For the model considered here, the simplest mome
closure scheme is themean-fieldapproximation, which as-
5-4
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sumes that there is no correlation between the mean num
of A and B particles, that is, E@^nAnB&#5E@^nA&#E@^nB&#.
This recovers the deterministic system~1! on substitutinga
5E@^nA&# andb5E@^nB&#. However, to understand the e
fect of spatial heterogeneity, second-order terms must
considered. The following equations describing the evolut
of E@^nAnB&#, E@^nA

2&#, and E@^nB
2&# can be developed

along similar lines to Eq.~6!:

d

dt
E@^nAnB&#5~E@^nA

2nB&#2E@^nAnB
2&#!k

2~k1Kb12n1l!E@^nAnB&#

1lE@^nA&^nB&#1na0E@^nB&#, ~8!

d

dt
E@^nA

2&#522kE@^nA
2nB&#1~2a011!nE@^nA&#

22nE@^nA
2&#1kE@^nAnB&#1na0 ,

d

dt
E@^nB

2&#52kE@^nAnB
2&#22~Kb1n1l!E@^nB

2&#

12lE@^nB&2#1kE@^nAnB&#

1~Kb1n12l!E@^nB&#.

Equations~6!–~8! contain two kinds of higher-order term
which must be removed to close the system. Fi
E@^nA&^nB&# and E@^nB&2# are second-order moments
^nA& and ^nB& with respect to the distribution of state var
ables at timet. In the following, we ignore fluctuations in
these quantities~also in E@^nAnB&#, E@^nA

2&#, and E@^nB
2&#),

so E@^nA&^nB&#5E@^nA&#E@^nB&#, and E@^nB&2#
5E@^nB&#2. It is anticipated that this approximation will b
valid for large system sizeN. Second, E@^nA

2nB&# and
E@^nA

2nB&# are third-order terms with respect to the spat
distribution. These terms will be approximated by functio
of the first- and second-order quantities E@^nA&#, E@^nB&#,
E@^nAnB&#, E@^nA

2&#, and E@^nB
2&#. Two forms of closure

~functional forms!, stochastic linearization and the log
normal approximation are now considered.

A. Stochastic linearization

In this method any terms that are nonlinear instochastic
variables are removed by replacing carefully selected exp
sions with their expectations@29#. Equations describing the
evolution of the moments of the resulting linear model a
closed, and thus can be used to approximate the orig
nonlinear process. In the present case, modifying the s
specific autocatalytic reaction rate in Eq.~4! to KE@^nAnB&#,
that is, the expectation of the average reaction rate ove
sites, leads to a closed system of equations, which can
obtained from Eqs.~6!–~8! by substituting

E@^nA
2nB&#5E@^nA&#E@^nAnB&# and

E@^nAnB
2&#5E@^nAnB&#E@^nB&#. ~9!
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Under this approximation the covarianceCAB5E@^nAnB&#
2E@^nA&#E@^nB&# obeys the equation

d

dt
CAB~ t !52~l1k1Kb12n!CAB~ t !

2kE@^nA~ t !&#E@^nB~ t !&#, ~10!

which may be solved by Fourier transformation and appli
tion of the convolution theorem to give

CAB~ t !52kE
0

`

E@^nA~ t2T!&#E@^nB~ t2T!&#

3e2(l1k1Kb12n)T dT. ~11!

Keeling et al. @15# obtain a similar result in the context o
predator-prey models, suggesting that it reveals the form
delay equation which would account for spatial heteroge
ity in the system. Expression~11! also shows thatCAB<0,
so the reaction rate in the spatial model,KE@^nAnB&#
5KE@^nA&#E@^nB&#1KCAB , is typically lower than that of
the mean-field~deterministic! modelKE@^nA&#E@^nB&#. The
degree of negative correlation quantifies the local deple
of reactants in the spatial system. Further insight comes f
examining the steady state solution of the stochastic line
ization ~6!, ~7!, and ~10! for the large mixing limit,l→`,
where the covarianceCAB becomes zero and E@^nA&# and
E@^nB&# correspond to the reactive state of the determinis
system~2!. Thus a large degree of mixing reduces the cor
lations between reactants, reflecting the associated br
down of spatial structure.

Figure 6 shows the results of numerical solution of t
stochastic linearization approximation together with a typi
realization of the full stochastic process, shown in Fig. 4,

FIG. 6. Stochastic linearization: Large mixing ratel51. The
top graph shows a typical realization~also shown in Fig. 4! of the
average densitŷnA(t)& against rescaled timetK from the stochas-
tic spatial autocatalytic process~jagged line!. The confidence inter-
val E@^nA&#61.96sA ~solid curves! is obtained by numerical solu
tion of Eqs. ~6!–~8! under the stochastic linearizatio
approximation~9!. The bottom graph depicts the same informati
for reactantB. In each case the parameter values areK51, a0

51, Kb5n51/17, andN5500.
5-5
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moderate mixing ratel51. The confidence intervals show
are based on the standard errors

sA5AE@^nA
2&#2E@^nA&#E@^nA&#/AN,

sB5AE@^nB
2&#2E@^nB&#E@^nB&#/AN,

and the results show good agreement between simulation
approximation. Moreover, the reactant levels are close
those of the reactive state (a1 ,b1) of the deterministic sys-
tem ~1!. In contrast, the situation shown in Fig. 7 withl
50.01 demonstrates that the stochastic linearization appr
mation breaks down for low mixing rates. In this regim
Fig. 4 shows the reactive state of spatial stochastic proce
be unstable, with the system settling down to the unreac
state after a short transient phase. However, stochastic lin
ization predicts that the steady state reactant levels will s
compared with the case of perfect mixing, but that the re
tive state will remain stable. Such failings motivate the a
plication of an alternative approximation.

B. Log-normal approximation

An alternative to stochastic linearization is to make so
assumption concerning the distribution of reactant lev
over sites. A possible choice is the Gaussian distribution,
in the low mixing regime, the average level of reactantB
tends to zero, suggesting that this or any other symme
distribution would be a poor approximation. A nonsymmet
alternative is to assume a log-normal distribution of react
levels over sites. As shown in the Appendix, this enables
third-order terms in Eqs.~6!–~8! to be approximated by

E@^nA
2nB&#5

E@^nA
2&#E@^nAnB&#2

E@^nA&#2E@^nB&#
,

E@^nAnB
2&#5

E@^nB
2&#E@^nAnB&#2

E@^nB&#2E@^nA&#
. ~12!

FIG. 7. Stochastic linearization: As in Fig. 6 but for small mi
ing ratel50.01. The reactive state (a1 ,b1) of the deterministic
system~1! is also shown~dot-dashed lines!.
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Although the resulting moment evolution equations are m
complex than for those associated with stochastic linear
tion, they nonetheless afford analytic insight. In the lar
mixing limit, l→`, these equations admit to a steady st
solution

E@^nA&#5E@^nA
2&#2E@^nA&#25~Kb1n!/K,

E@^nB&#5E@^nB
2&#2E@^nB&#25

n~a0K2Kb2n!

@k~Kb1n!#
,

CAB50, ~13!

which corresponds to a Poisson-like distribution about
deterministic reactive state~2!. To first order asl→`, the
evolution equation for the correlationCAB becomes

d

dt
CAB~ t !52lCAB~ t !.

Thus, in this limit the correlation tends to zero exponentia
as mixing breaks down spatial heterogeneity. Furtherm
this equation suggests that forl→` the steady state~13! is
an attracting state: this conjecture is supported by the
merical solution of the log-normal approximation to the m
ment evolution equations forl51, and these results, show
in Fig. 8, also demonstrate the accuracy of the log-norm
approximation.

A second steady state of the log-normal approximati
valid for all l, is

E@^nA&#5a0 , E@^nA
2&#2E@^nA&#25a0 ,

E@^nB&#50, E@^nB
2&#2E@^nB&#250,

CAB50, ~14!

FIG. 8. Log-normal approximation: Large mixing ratel51.
The top graph shows a typical realization of the average den
^nA(t)& against re-scaled timetK ~jagged line! as shown in Fig. 6.
The confidence interval E@^nA&#61.96sA ~solid curves! is obtained
by numerical solution of Eqs.~6!–~8! under the log-normal ap-
proximation ~12!. The bottom graph depicts the same informati
for reactantB. In each case the parameter values areK51, a0

51, Kb5n51/17, andN5500.
5-6
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SPATIAL HETEROGENEITY AND THE STABILITY OF . . . PHYSICAL REVIEW E 66, 051915 ~2002!
which is a Poisson-like distribution whose mean correspo
to the unreactive state of the deterministic system. Althou
we have been unable to determine the relative stability of
reactive @Eq. ~13!# and unreactive@Eq. ~14!# states of the
log-normal approximation analytically, Fig. 9 demonstra
that for l50.01 the unreactive state~14! is asymptotically
stable in accord with results obtained by the simulation
the full stochastic model shown in Fig. 4. Thus, in contras
stochastic linearization, the log-normal approximation is a
to predict the transition to the unreactive state seen at
levels of mixing.

Figure 10 compares the log-normal approximation w
the simulation results of Fig. 5. The log-normal approxim
tion is quantitatively correct at the extremes of mixing a
no mixing, and although it is less accurate, it still captu
the qualitative behavior at intermediate levels ofl. As we

FIG. 9. Log-normal approximation: As in Fig. 8 but for sma
mixing ratel50.01. The reactive state (a1 ,b1) of the determinis-
tic system~1! is also shown~dot-dashed lines!.

FIG. 10. Stability of reaction state: The solid lines show t
asymptotic values of E@^nA&# and E@^nB&# ~as indicated! obtained
from the solution of the log-normal approximation for a range
relative mixing ratesl/K. The symbols represent estimates
E@^nA&# ~diamonds! and E@^nB&# ~circles! obtained from ten simu-
lation runs, with samples collected, after a burn-in period, fromt
5500, . . .,1000. The standard errors in these estimates are
proximately equal to the size of the symbols. The parameter va
areK51, a051, Kb5n51/17, andN5500.
05191
s
h
e

s

f
o
e
w

-

s

have seen in the limitl→`, the spatial system become
well mixed, and therefore corresponds to the nonspatial s
tem with volumeV5N. The results of Figs. 2 and 10 impl
that for small systems (N,50) the reactive state will be
unstable for alll, and the log-normal approximation wil
break down, as is confirmed by direct simulation. This
related to the fact, noted below Eqs.~8!, that the moment-
closure schemes are expected to be most accurate for
N. This is because we only consider the evolution of t
expected values of quantities describing the spatial distr
tion ~i.e., E@^nA&#, E@^nB&#, etc.!, neglecting any fluctua-
tions between realizations of the process.

Figure 11 shows the corresponding asymptotic beha
of the covariance and variances in reactant levels across
system for a range of mixing rates. The data shown are fr
the simulations and solutions to the log-normal approxim
tion used in Fig. 10. The reactants are maximally separa
and thus spatial heterogeneity is at its greatest, at the cri
mixing rate where the reaction state becomes stable~un-
stable!. For larger mixing rates, the correlation increas
with l.

IV. DISCUSSION

A living cell is an open system, which can communica
with environments by transferring chemical signals and
ergy. Enzymatic reactions in living cells are confined to ve
small spatial volumes. Moreover, these reactions are sub
to strong thermal fluctuations inside the cells due to a flow
energy @14#, and these conditions can lead to qualitati
changes in the kinetics of enzymatic reactions in compari
with high-density well-mixed conditions. For example, c

f

p-
es

FIG. 11. Stability of reaction state: The solid lines show t
asymptotic values of Var(nA)5E@^nA

2&#2E@^nA&#2, var(nB)
5E@^nB

2&#2E@^nB&#2, and the normalized correlation
corr(nA ,nB)5CAB /Avar(nA)var(nB) ~as indicated! obtained from
the solution of the log-normal approximation for a range of valu
of the relative mixing ratel/K. The symbols represent estimates
E@var(nA)# ~diamonds!, E@var(nB)# ~circles!, and E@corr(nA ,nB)#
~squares! obtained from ten simulation runs, with samples collect
after a burn-in period fromt5500, . . .,1000. The standard error
in these estimates are approximately equal to the size of the s
bols. The parameter values areK51, a051, Kb5n51/17, and
N5500.
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MARION et al. PHYSICAL REVIEW E 66, 051915 ~2002!
herent dynamics can form between substrates and enzy
when the reaction takes place in small volumes@14,30–32#.
Furthermore, our results suggest that without sufficient co
munication between cells, certain biochemical reactio
might be unstable with respect to thermal fluctuations
would also be interesting to study the effects of within-c
spatial heterogeneity. In living cells, a large number of en
matic reactions are networked in complicated ways, and
coupled to thousands of substrates. Pathways can be u
rectional, reversible, branched, or cyclic, and there are m
different types of inhibition and activation@33#. In the post-
genome era, these complex networks can be reconstru
based on genomic data. Unsurprisingly, the purposes
functions of complex biochemical networks, in particul
spatiotemporal self-organization behavior, have attrac
much attention@34,35#. For enzymatic reactions, variou
mechanisms may lead to spatiotemporal behavior@36#. Au-
tocatalysis represents a class of reactions of great import
to living cells and has been much studied in nonspatial c
texts@2,3,5,6#. Togashi and Kaneko@37# show that stochastic
fluctuations and discreteness in molecular numbers lea
transitions between states in a nonspatial autocatalytic
tem. The stochastic spatiotemporal autocatalytic proc
studied in this work can be considered a generic model
studying spatiotemporal behavior in biochemical reactio
We note that Velikanov and Kapral@38# study the propaga
tion of traveling wave fronts in a spatially explicit discre
time ~Markov chain! model of quadratic autocatalysis. Usin
a perturbation technique, which systematically accounts
spatial correlations, they show that the wave front velocity
the stochastic system is lower than that predicted by a m
field analysis which ignores such correlations. Moreover
the diffusion coefficient increases, spatial correlations
minimized and the discrepancy reduced. The phenomeno
analogous to the effect of finite mixing on the stability of t
reactive state explored in the current paper. The model s
ied here was amenable to a spatial moment-closure app
mation which compared favorably with simulations of t
full stochastic process; these results demonstrate the u
of order parameters, such as the spatial averages consid
here, in studying system behavior. Our investigations cle
show how internal fluctuations, small volumes, and hete
geneity affect the kinetics of the quadratic catalytic syste

In the nonspatial system at low volumes, the reactive s
of the autocatalytic process is unstable to internal stocha
fluctuations. The spatial model shows that such unsta
components can be linked together, via random exchang
reactants, to form a system in which the reaction is sta
For large mixing rate (l→`), the spatial system withN
components behaves like a nonspatial system with volumN,
but for finite mixing rate this effective volume is less thanN.
Thus, finite mixing generates spatial heterogeneity~correla-
tion! which destabilizes the system with respect to a p
fectly mixed system of the same volume, and there is a c
cal level of exchange~mixing! below which the reaction is
unstable. Conversely, at the level of the cell, finite mixi
stabilizes the reaction kinetics by forming a system wh
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effective volume is much greater than any individual cell.
conclusion, our results suggest that autocatalytic reaction
netics may only be stable in cellular systems in which
number of cells are able to exchange reactants via s
transport process. Perhaps such phenomena influenced
lution by favoring the persistence of aggregations of multi
cells over those of solitary individuals.
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APPENDIX: LOG-NORMAL APPROXIMATION

If the reactant levelsnA andnB are log-normally distrib-
uted over sites, theny15 ln nA andy25 ln nB are joint normal
with the moment generating function@22#

M ~u1 ,u2![E@^exp$u1y11u2y2%&#

5exp$k10u11k01u21k20u1
2/2

1k11u1u21k02u2
2/2%,

where E@^•&# denotes the expectation over distributions
space and time, and

k1052 ln~E@^nA&#!2 ln~E@^nA
2&#!/2,

k0152 ln~E@^nB&#!2 ln~E@^nB
2&#!/2

k205 ln~E@^nA
2&#!22 ln~E@^nA&#!,

k025 ln~E@^nB
2&#!22 ln~E@^nB&#!,

k115 ln~E@^nAnB&#!2~k201k02!/22k102k01.

For an appropriate choice ofu1 and u2 expressions for the
higher-order terms, E@^nA

2nB&# and E@^nAnB
2&# are obtained

from

E@^nA
u1nB

u2&#5^@exp$u1y11u2y2%#&5M ~u1 ,u2!.

For example, settingu152 andu251 yields

E@^nA
2nB&#5M ~2,1!

5exp$2k101k0112k2012k111k02/2%,

which simplifies to

E@^nA
2nB&#5

E@^nA
2&#E@^nAnB&#2

E@^nA&#2E@^nB&#
.

The resulting expressions~12! can then be used to close th
system of moment evolution equations~6!–~8!.
5-8
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